许方园(副教授)

硕士生导师

所在单位:自动化学院

学历:博士

联系方式:邮箱:datuan12345@hotmail.com

在职信息:在职

   
当前位置: 中文主页 >> 科学研究 >> 论文成果

Virtual Storage-Based DSM With Error-Driven Prediction Modulation for Microgrids(SCI二区:2021年影响因子:3.745)

点击次数:

影响因子:3.745

DOI码:10.1109/ACCESS.2019.2913898

发表刊物:IEEE ACCESS

关键字:RENEWABLE ENERGY-RESOURCES; SYSTEM

摘要:Microgrids consider adjustable loads in demand-side management (DSM), which respond to dynamic market prices. A reliable DSM strategy relies on load forecasting techniques in day-ahead (DA) scheduling. This paper applies an error-driven prediction modulation to evaluate these differences. In addition, this paper creates two new DSM methods with an evaluation environment to utilize this modulation. The first method adds this modulation directly to traditional microgrid DSM with electrical storage. The second method creates two virtual sub-storages for behavior adjustment in both DA and real-time (RT) markets. The results of numerical studies indicate that the new DSM methods can reduce microgrid operation costs.

备注:SCI二区:2021年影响因子:3.745

合写作者:Mengxuan Yan,Yue Wang,Yiliang Fan,Zekai Lee,Yonggang Wen,Mohammad Shahidehpour

第一作者:Xuecong Lee

论文类型:期刊论文

通讯作者:Fang Yuan Xu,Loi Lei Lai

文献类型:J

卷号:7

页面范围:71109-71118

ISSN号:2169-3536

是否译文:

发表时间:2019-04-30

收录刊物:SCI

发布期刊链接:https://ieeexplore.ieee.org/document/8703116

上一条: Sharing car park system for parking units of multiple EVs in a power market(SCI二区:2021年影响因子:6.082) 下一条: A robust correlation analysis framework for imbalanced and dichotomous data with uncertainty(SCI二区:2021年影响因子:5.910)