尹明

个人信息Personal Information

教授

硕士生导师

教师拼音名称:yinming

入职时间:2006-07-01

所在单位:自动化学院

学历:博士

性别:男

联系方式:yiming@gdut.edu.cn

学位:工学博士学位

在职信息:调出

学科:模式识别与智能系统

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Kernel Sparse Subspace Clustering on Symmetric Positive Definite Manifolds

点击次数:

发表刊物:In The IEEE Conference on Computer Vision and Pattern Recognition(CVPR) 2016

摘要:Sparse subspace clustering (SSC), as one of the most successful subspace clustering methods, has achieved notable clustering accuracy in computer vision tasks. However, SSC applies only to vector data in Euclidean space. As such, there is still no satisfactory approach to solve subspace clustering by self−expressive principle for symmetric positive definite (SPD) matrices which is very useful in computer vision. In this paper, by embedding the SPD matrices into a Reproducing Kernel Hilbert Space (RKHS), a kernel subspace clustering method is constructed on the SPD manifold through an appropriate Log-Euclidean kernel, termed as kernel sparse subspace clustering on the SPD Riemannian manifold (KSSCR). By exploiting the intrinsic Riemannian geometry within data, KSSCR can effectively characterize the geodesic distance between SPD matrices to uncover the underlying subspace structure. Experimental results on two famous database demonstrate that the proposed method achieves better clustering results than the state-of-the-art approaches.

合写作者:Yi Guo,Junbin Gao,Shengli Xie,Zhaoshui He

第一作者:Ming Yin

论文类型:会议论文

页面范围:pages 5157-5164, (CCF A类会议)

是否译文:

发表时间:2016-06-27