孟安波

个人信息Personal Information

博士生导师

硕士生导师

教师拼音名称:Meng Anbo

所在单位:自动化学院

学历:博士研究生毕业

在职信息:在职

学科:电力系统及其自动化

其他联系方式Other Contact Information

邮编 : 510006

通讯/办公地址 : 广州大学城广东工业大学实验2号楼310

邮箱 : menganbo@vip.sina.com

个人简介Personal Profile

孟安波,双博士、教授、博士生导师、电气工程学科带头人。2006年获华中科技大学系统分析与集成专业理学博士学位;2008年获法国Université Paul Verlaine-METZ大学自动化专业工学博士学位。主持参与国家级、省部级以及企业项目30余项,其中国家自然科学基金面上项目2项,全国工程专业学位研究课题1项,广东省联合基金重点项目1项,广东省科技计划项目3项,南方电网科技项目20余项;发表论文100余篇,其中SCI-TOP期刊论文20余篇,单篇最高它引166次;授权国家发明专利10余项。近年来的研究工作包括:群体智能优化理论与方法、多智能体分布式协同计算、大规模电网优化调度、新能源发电预测以及人工智能在电网中的应用。


代表性科研项目:

1.  基于多源异构信息深度融合的海上风电场多时空尺度高精度预测方法研究,广东

     基础与应用基础研究基金重点项目,2022-2026

2.  面向少样本风电预测的进化深度学习及其迁移方法研究,国家自然科学基金面

    ,2023-2026

3.  复合绝缘子酥断智能诊断及超声探伤仪研发,南网科技计划,2022-2024。

4.  架空输电线路防人身坠落关键技术研究及应用,南网科技计划,2022-2024

5.  面向大规模电网优化调度的纵横交叉群智能优化方法研究,国家自然科学基金面上

     项目,2019-2022

6.  电力系统中无人机协同巡检技术研究,广州市科技计划重点项目2019-2021

7.  基于机巡智能作业技术的线路现场风险评估和载流量校核方法研究及应用,南方电

     网科技项目,2019-2021

8.  电缆隧道机器人巡检数据挖掘与智能诊断系统开发与应用,南方电网科技项目,20

     17-2019

9.  电气工程电力方向专业硕士产学研合作培养模式探索研究,全国工程专业学位研究

     生教育课题,2016-2017

10.计及风电的电网短期负荷预测系统关键技术研究,广东省科技计划,2016-2017

11.计及新能源出力随机波动的地区电网短期负荷预测,南方电网科技项目,2016-

     2017

12.基于北斗定位技术的输电线路巡检智能终端的开发和应用,南方电网科技项目,

     2015-2016

13.电能计量装置状态检修技术研究,南方电网科技项目,2015-2016

14.电力用户价值评估及增值服务系统,南方电网科技项目,2014-2015

15.抽水蓄能机组智能轴线调整系统,南方电网科技项目,2014-2015

16.含分布式电源的揭阳电网无功补偿优化问题研究,南方电网科技项目,2013-2014

17.含多风电场的揭阳电网规划问题研究,南方电网科技项目,2012-2013

18.全自动智能盘车系统关键技术的研究与开发,广东省教育部产学研合作专项基金,

     2010-2011


代表性期刊论文:

1.   Anbo Meng, Shu Chen, Zuhong Ou, Jianhua Xiao, Jianfeng Zhang, Shun Chen, Zheng Zhang, Ruduo Liang, Zhan Zhang, Zikang Xian, Chenen Wang, Hao Yin, Baiping Yan*, A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network, Energy, Volume 261, Part A, 27 August, 2022SCI一区)

2.   Anbo Meng, Zibin Zhu, Weisi Deng, Zuhong Ou, Shan Lin, Chenen Wang, Xuancong Xu, Xiaolin Wang, Hao Yin*, Jianqiang Luo*, A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine, Energy, Volume 260, 18 August, 2022SCI一区)

3.    Anbo Meng, Xuancong Xu, Zhan Zhang, Cong Zeng, Ruduo Liang, Zheng Zhang, Xiaolin Wang, Baiping Yan, Hao Yin*, Jianqiang Luo*, Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy, Energy, Volume 258, 18 July 2022SCI一区)

4.  Anbo Meng, Cong Zeng, Xuancong Xu, Weifeng Ding, Shiyun Liu, De Chen, Hao Yin*Decentralized power economic dispatch by distributed crisscross optimization in multi-agent system, EnergyVolume 246, 1 May 2022SCI一区)

5.    Xiongmin Tang, Zhengshuo Li, Xuancong Xu, Zhijun Zeng, Tianhong Jiang, Wenrui Fang, Anbo Meng*(通讯作者, Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm, Energy, Volume 244, Part A, 1 April 2022. SCI一区)

6.    Anbo Meng, Shun Chen, Zuhong Ou, Weifeng Ding, Huaming Zhou, Jingmin Fan, Hao Yin, A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization, EnergyVolume 238, Part B, 1 January 2022SCI一区)

7.     Hao Yin, Zuhong Ou, Anbo Meng*(通讯作者), A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networksEnergy Conversion and ManagementVolume 247, 1 November 2021 SCI一区)

8.     Hao Yin, Zuhong Ou, Jiajin Fu, Yongfeng Cai, Shun Chen, Anbo Meng*(通讯作者), A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture, EnergyVolume 234, 1 November 2021SCI一区)

9.     Anbo Meng, Cong Zeng, Peng Wang, De Chen, Tianmin Zhou, Xiaoying Zheng, Hao Yin, A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem, EnergyVolume 225, 15 June 2021SCI一区)

10.   Hao Yin, Fei Wu, Xin Meng, Yicheng Lin, Jingmin Fan, Anbo Meng* (通讯作者), Crisscross optimization based short-term hydrothermal generation scheduling with cascaded reservoirs, EnergyVolume 203, 15 July 2020SCI一区)

11.   Hao Yin, Zuhong Ou, Shengquan Huang, Anbo Meng*(通讯作者), A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition, EnergyVolume 189, 15 December 2019SCI一区)

12.   Hao Yin, Zhen Dong, Yunlong Chen, Jiafei Ge, Loi Lei Lai, Alfredo Vaccaro, Anbo Meng*(通讯作者),  An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization, Energy Conversion and ManagementVolume 150, 15 October 2017, Pages 108-121SCI一区)

13.   Anbo Meng, Jiafei Ge, Hao Yin, Sizhe Chen, Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm, Energy Conversion and ManagementVolume 114, 15 April 2016, Pages 75-88SCI一区,ESI-高被引论文,ESI-热点论文)

14.   Anbo Meng, Jinbei Li, Hao Yin, An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects, EnergyVolume 113, 15 October 2016, Pages 1147-1161 SCI一区)

15.   Anbo Meng, Zhuan Li, Hao Yin, Sizhe Chen, Zhuangzhi Guo, Accelerating particle swarm optimization using crisscross search, Information SciencesVolume 329, 1 February 2016, Pages 52-72SCI一区,ESI-热点论文)

16.   Anbo Meng, Hanwu Hu, Hao Yin, Xiangang Peng, Zhuangzhi Guo, Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects, EnergyVolume 93, Part 2, 15 December 2015, Pages 2175-2190SCI一区)

17.   Anbo Meng, Peng Mei, Hao Yin, Xiangang Peng, Zhuangzhi Guo, Crisscross optimization algorithm for solving combined heat and power economic dispatch problem, Energy Conversion and Management, Volume 105, 15 November 2015, Pages 1303-1317SCI一区)

18.   An-bo Meng, Yu-cheng Chen, Hao Yin, Si-zhe Chen, Crisscross optimization algorithm and its application, Knowledge-Based SystemsVolume 67, September 2014, Pages 218-229SCI一区)


  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations

团队成员Research Group

团队名称:新型电力系统与人工智能团队(新π团队)

团队介绍:团队中教授3人,副教授4人,讲师4人。主要的研究方向包括:电力系统与智能电网;新能源发电与储能技术;电力电子与电能变换。