陈辞,国家高层次青年人才项目获得者;教授、博士生导师、自控系主任;入选广东工业大学百人特聘教授、校学术与学位委员会分学部委员。曾在美国德克萨斯大学阿灵顿分校、美国田纳西大学诺克斯维尔、新加坡南洋理工大学、瑞典隆德大学学习工作。研究领域包括:强化学习反馈控制、弹性控制、网络化系统及其应用。成果发表在《国家科学进展》、Automatica、IEEE Trans. Autom. Control等领域顶刊40余篇,被中国科学出版、EurekAlert!(是由美国科学促进会(AAAS)运营的独立编辑、非营利的新闻发布平台,为公众提供来自世界顶尖科研机构和高校的前沿研究和重要科学新闻)、Bioengineer.org、TechXplore、MirageNews等国内外媒体报道。
研究成果获中国自动化学会科技进步特等奖、粤港澳大湾区人工智能与自动化学会自然科学一等奖。担任国际期刊IEEE Transactions on Neural Networks and Learning Systems的Associate Editor,International Journal of Robust and Nonlinear Control的Subject Editor以及Advanced Control for Applications的Associate Editor。2019年获瑞典瓦伦堡基金会与新加坡南洋理工大学联合冠名基金项目Wallenberg-NTU Presidential Postdoctoral Fellowship. https://www.ntu.edu.sg/research/research-careers/presidential-postdoctoral-fellowship-(ppf)/wallenberg-ntu-ppf-2019-2021
欢迎对相关研究方向感兴趣的本/硕/博同学与我联系:ci.chen@gdut.edu.cn。
2022年指导学生至今,学生一作论文如下:
[1] C. Huang(学生), C. Chen*, K. Xie, F. L. Lewis, and S. Xie, "Specified Convergence Rate Guaranteed Output Tracking of Discrete-Time Systems Via Reinforcement Learning", Automatica, Accepted, 2023
[2] Y. Chen(学生), C. Chen*, K. Xie, and F. L. Lewis, "Online Policy Iteration Algorithms for Linear Continuous-Time H-Infinity Regulation With Completely Unknown Dynamics", IEEE Transactions on Automation Science and Engineering, Accepted, 2023
[3] C. Zhang(学生), C. Chen*, F. L. Lewis, and S. Xie, Policy Iteration-Based Learning Design for Linear Continuous-Time Systems Under Initial Stabilizing OPFB Policy, IEEE Transactions on Cybernetics, 2024
[4] Y. Qin(学生)†, C. Zhang(学生)†, C. Chen*, S. Xie, and F. L Lewis, “Control Policy Learning Design for Vehicle Urban Positioning Via BeiDou Navigation,” Journal of Systems Science and Complexity, Accepted. 2023
[5] C. Huang(学生), C. Chen*, K. Xie, Z. Li, and S. Xie, “Adaptive Output Synchronization with Designated Convergence Rate of Multi-agent Systems Based on Off-Policy Reinforcement Learning", IEEE Transactions on Systems, Man, and Cybernetics: Systems, Accepted, 2024
[6] Z. Zheng(学生), C. Chen*, K. Xie, Z. Li, and S. Xie, “Event-Triggered Synchronization Adaptive Learning Control of Nonlinear Multi-agent Systems With Resilience to Communication Link Faults", Neural Computing and Applications, Accepted, 2023
[7] C. Zhang(学生), C. Chen*, and S. Xie, “Learning-based Prescribed Rate Design for Output Regulation of Discrete-time Systems,” 2023 35th Chinese Control and Decision Conference (CCDC), pp. 2738–2744, 2023.
[8] S. Lei(学生), C. Zhang(学生), X. Gu*, J. Qiu(学生), Z. Gao(学生), Ci Chen*, Learning-based Robust Control Policy Design for Vehicular Navigation via Ultra-wideband Communication, Unmanned Systems, 2024
-------------------
Dr. Ci Chen works in reinforcement learning for feedback control and resilient control of autonomous systems. He has published over 40 journal papers with more than half of the papers in top journals such as National Science Open, IEEE Transactions on Automatic Control, Automatica, and IEEE Transactions on Neural Networks and Learning Systems.
Dr. Chen is a professor with the Guangdong University of Technology, Guangzhou, China. He is an awardee of National Science Fund for Excellent Scholars (Overseas) from the National Natural Science Foundation of China. He was awarded Wallenberg - NTU Presidential Postdoctoral Fellowship by Nanyang Technological University (NTU, Singapore) and the Swedish Wallenberg-funded research program WASP (Wallenberg AI, Autonomous Systems and Software Program). https://www.ntu.edu.sg/research/research-careers/presidential-postdoctoral-fellowship-(ppf)/wallenberg-ntu-ppf-2019-2021
Dr Chen has been serving as an Associate editor of IEEE Transactions on Neural Networks and Learning Systems, an Editor of International Journal of Robust and Nonlinear Control, and an Associate Editor of Advanced Control for Applications. He is a member of the Chinese Association for Artificial Intelligence.
Research keywords: reinforcement learning, adaptive/approximate dynamical programming, adaptive systems, cooperative learning systems, resilient systems
Email: ci.chen@gdut.edu.cn Website: https://teacher.gdut.edu.cn/chen/